Enhance contrast in PCA based beamformers using smoothing kernel
نویسندگان
چکیده
منابع مشابه
Enhance contrast in PCA based beamformers using smoothing kernel.
The contrast and resolution have trade-off in medical ultrasound imaging. Most of adaptive beamformer can enhance the imaging resolution significantly but not improve the contrast at the same time. The principal component analysis (PCA) based beamformers such as the eigenspace-based minimum variance (ESBMV) beamformer provide a good imaging resolution. Neighbors of the focal point include the c...
متن کاملImproved Kernel Learning Using Smoothing Parameter Based Linear Kernel
Kernel based learning has found wide applications in several data mining problems. In this paper, we propose a modified classical linear kernel using an automatic smoothing parameter (Sp) selection compared with the existing approach. We designed the Sp values using the Eigen values computed from the dataset. Experiment results using some classification related benchmark datasets reveal that th...
متن کاملInteractive Knowledge-Based Kernel PCA
Data understanding is an iterative process in which domain experts combine their knowledge with the data at hand to explore and confirm hypotheses. One important set of tools for exploring hypotheses about data are visualizations. Often, however, traditional, unsupervised dimensionality reduction algorithms are used for visualization. These tools allow for interaction, i.e., exploring different...
متن کاملImproved Kernel Based Learning Using Smoothing Parameter Based Linear Kernels
Kernel based learning has already found wide applications to solve several data mining problems. In this paper, we proposed an improved linear kernel with automatic smoothing parameter (Sp) selection compared to the classical approach. Experiment results using some classification related benchmark datasets reveal that the improved linear kernel performed better than some existing kernel techniq...
متن کاملIntrusion Detection System Using PCA and Kernel PCA Methods
The network traffic data used to build an intrusion detection system is frequently enormous and redundant with important useless information which decreases IDS efficiency. In order to overcome this problem, we have to reduce as much as possible this meaningless information from the original high dimensional data. To do this, we have compared the performance of two features reduction techniques...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bio-Medical Materials and Engineering
سال: 2015
ISSN: 1878-3619,0959-2989
DOI: 10.3233/bme-151460